Discrete Math Midterm

Ashish Jayamohan - G08141951 Start Time: 1:00 End Time: 2:17

Question 1

We are asked to prove that for integers a, b , and $c, a|c$ where $a|b$ and $a|(b+c)$. Assuming $a|b$ and $a|(b+c)$ are both true, we can conclude that there exists some x and y where the following statements stand true:

$$
x \cdot a = b
$$

$$
y \cdot a = b + c
$$

Using systems of equations, we can subtract b from $b + c$, giving us the following equation:

$$
(b+c)-b=c=(y\cdot a)-(x\cdot a)
$$

Factoring on the right hand side gives us the following:

$$
c = a \cdot (y-x)
$$

Thus, since x and y are both integers, their difference is also an integer, signifying that there is some integer $y - x$ which multiples by a to give c , proving that $a|c|$

Question 2

We are asked to prove that for a given integer $n, n^2 - 2$ is not divisible by 4. In the case where n^2-2 is divisible by 4, we can assume the following statement is true as well for some arbitrary x where $x \in \mathbb{Z}$:

$$
n^2-2=4\cdot x
$$

$$
n^2=4x+2
$$

We now have to consider two cases - one where n is even and the other where n is odd. Where n is even, we can assume that $n = 2 \cdot y$ where y is some arbitrary number where $y \in \mathbb{Z}.$ Knowing this, we can use our statement from above and derive the following:

$$
(2y)^2=4\cdot 4x+2\rightarrow 4y^2=4x+2
$$

We can now define some arbitrary value a such that $a = y^2$ and $a \in \mathbb{Z}.$ Using this, we can substitute to find the following:

$$
4a=4x+2
$$

Dividing by 2 on both sides, we produce:

$$
2s=2x+1
$$

We know that $2s$ must be even and $2x + 1$ must be odd. Thus, because an even number cannot also be odd, we have a contradiction.

We also consider the case where n is odd. In this case, we can define some variable z such that $(2z+1)^2 = 4x+2$ and $z \in \mathbb{Z}$. Simplifying this statement, we produce:

$$
4z^2 + 4z + 1 = 4x + 2
$$

$$
4z^2 + 4z = 4x + 1
$$

Factoring the 4 out of the left-hand side of the equation, we get:

$$
4(z^2+z)=4x+1
$$

Assigning b as some number where $b \in \mathbb{Z}$ and $b = z^2 + z$, we produce the following equation:

$$
4b=4x+1
$$

We can now define some number c as $c = 2x$ where $c \in \mathbb{Z}.$ This produces the following when substituted:

$$
2b=2c+1
$$

Once again, $2b$ is even which $2c + 1$ is odd, thus proving a contradiction. All cases possible for n prove to be a contradiction, thus we can conclude that n^2-2 is not divisible by 4 for any integer n .

Question 3

Part A

Knowing n to be an integer, $n \mod 3$ can produce either $0, 1$, or 2.

Part B

An integer n can be written in the following ways assuming a to be some arbitrary number where $a \in \mathbb{Z}$:

> 3a $3a + 1$

 $3a + 2$

Part C

Using our intuition from Part B, we can presume that there are three remainders r which we can get from the calculation $r = n \mod 3$ for some number n where $n \in \mathbb{Z}$. The three values which r can take on are 0, 1, and 2. Thus, we can represent every integer n as either $3a_{r}$ $3a + 1$, or $3a + 2$ for some integer a where $a \in \mathbb{Z}$ as well. Thus, we have three cases to consider for this problem.

In the case where we can represent our n as $3a$, we know that n itself is composite as it is divisible by 3. The only possible loop in this would be when $n = 3$, but we are told in the problem that $n > 3$, thus invalidating this exception.

In the case where have an n which is represented as $3a + 1$, $n + 2$ can be represented as such:

$$
n+2=3a+3
$$

We can factor the 3 out of the right hand side of the equation to reveal the following:

$$
n+2=3\cdot (a+1)
$$

Thus, we can see that in this case, $n + 2$ is divisible by 3, thus making it a composite number. Finally, in the case where n is represented as $3a + 2$, $n + 4$ can be represented as such:

 $n+4=3a+6$

Factoring out 3 on the right hand side once again, we produce the following:

$$
n+4=3\cdot (a+2)
$$

Thus, $n + 4$ in this case is non-prime as it is divisible by 3. Thus, for all cases of n , either $n, n + 2$, or $n + 4$ is a composite number.

Question 4

We are asked to prove that $1 + 3n \leq 4^n$ where $n \geq 0$.

Let us define $\theta(n)$ as representing the inequality above. As a simple case, we find that $\theta(0)$ is true.

Assuming k to be some integer where $k \geq 0$ where $\theta(k)$ is true, we can establish the following inequality:

$$
1+3k\leq 4^k
$$

By induction, we increment k by 1 will give us the following inequality:

$$
1+3(k+1)\leq 4^{k+1}
$$

Simplifying and redistributing the right side of the inequality, we obtain: $(3k + 1) + 3$. By induction, this must be less than or equal to $4^n + 3 \le 4^n + 3 \cdot 4^n.$ Thus, $4^n + 3 \le 4^{n+1}$, proving that $\theta(n + 1)$ is true. Thus, for any n where $n \in \mathbb{Z}$ and $n \ge 0$, $1 + 3n \le 4^n$.