
Discrete Math Homework 2

4.6.18

We can assume that both  and  are integers where  and such integers , , , and 
exist such that the following conditions are fulfilled:

Assuming this to be true, we can then use simple algebra to derive:

We can be certain that both  and  fall between  and  as it signifies the remainder. As a
result, we can assume the following conditions to be true:

Using these assumptions, we can derive the following:

Knowing that , we can substitute to get the following:

Knowing that , we can divide the entire inequality by , producing the following:

Since we know that  must be an integer (  where ), we can conclude that
the only possible value for  is . Thus, we can conclude that since , .
Because we know that  and , we can follow this stream of logic:

Thus, we conclude that  and 

5.1.48

Since we are given that , we can simple substitute all  with . Knowing this, we can
follow this stream of logic:

a d d > 0 q1 q2 r1 r2

d ⋅ q1 + r1 = d ⋅ q2 + r2

r2 − r1 = d ⋅ (q1 − q2)

r1 r2 0 d

0 ≤ r1 < d

0 ≤ r2 < d

−d < r2 − r1 < d

r2 − r1 = d ⋅ (q1 − q2)

−d < d ⋅ (q1 − q2) < d

d > 0 d

−1 < q1 − q2 < 1

q1 − q2 a − b ∈ Z a, b ∈ Z

q1 − q2 0 q1 − q2 = 0 q1 = q2

q1 = q2 r2 − r1 = d ⋅ (q1 − q2)

r2 − r1 = d ⋅ 0

r2 − r1 = 0

r1 = r2

q1 = q2 r1 = r2

i = k + 1 k i − 1



5.2.10

We are asked to prove the following where :

We begin assuming some integer  where . Substituting, we get:

Thus, we can also conclude that the following is also true:

We can also presume the following is true:

We can thus follow this stream of logic:

Thus, because we arrive at this result which we predicted above, we have proven that

5.3.29

5

∑
k=1

k ⋅ (k − 1)

=
6

∑
i=2

(i − 1) ⋅ ((i − 1) − 1)

=
6

∑
i=2

(i − 1) ⋅ (i − 2)

n ≥ 1

12 + 22 + ⋯ + n
2 =

n(n + 1)(2n + 1)

6

m m = n

12 + 22 + ⋯ + m
2 =

m(m + 1)(2m + 1)

6

12 + 22 + ⋯ + m
2 + (m + 1)2 =

(m + 1)(m + 2)(2m + 3)

6

(12 + 22 + ⋯ + m
2) + (m + 1)2 =

m(m + 1)(2m + 1)

6
+ (m + 1)2

(12 + 22 + ⋯ + m2) + (m + 1)2 =
m(m + 1)(2m + 1) + 6(m + 1)2

6

=
(m + 1) ⋅ {m(2m + 1) + 6(m + 1)}

6

=
(m + 1)(2m2 + 7m + 6)

6

=
(m + 1)(m + 2)(2m + 3)

6

12 + 22 + ⋯ + n2 =
n(n + 1)(2n + 1)

6



Let us assume  where . We can also assume an integer  such that 

. If we assume that the prior equation is true for  people in the room, we can

easily expand this situation to  people in the room. With one extra person, that extra
person would need to give handshakes to all the people existing in the room ( ). Thus, we can
say that the following is true:

Using our initial formula of , we can see that , which is exactly

what we have derive. Thus, the situation is proven.

5.4.7

For some number , we can assume the following is correct, given the formula in the problem:

Extending this formula, we can extrapolate the following:

We can analyze this pattern as such:

We know that  for some arbitrary  must be , which is equal to .
Thus, we know that  must be , which is equal to 

5.5.38

Let us define  as the number of distinct ways in which to climb  stairs.
Where ,  and where , . This is solved intuitively. We can therefore
generalize the following where , there are two options: the last step being either  or 
steps. In the case of a  step as the last step, there are  ways to reach the last step.
Similarly, the case of  steps as the last move brings about  ways to reach the last set of 

P(n) P(n) =
n(n−1)

2 k

P(k) =
k(k−1)

2 k

k + 1

k

P(k + 1) =
k(k − 1)

2
+ k

=
k2 − k + 2k

2

=
k2 + k

2
=

k(k + 1)

2

P(n) =
n(n−1)

2 P(k + 1) =
(k+1)k

2

k

gk − gk−1 = 2 ⋅ (gk−1 − gk−2)

2 ⋅ (gk−1 − gk−2) = 2k−2 ⋅ (g2 − g1) = 2k−1

g2 − g1 = 2

g3 − g2 = 4

⋯

gn − gn−1 = 2n−1

gn − g1 n 2 + 4 + ⋯ + 2n−1 2n − 2

gn 2n − 2 + g1 2n + 1

cn n

n = 1 c1 = 1 n = 2 c2 = 2

n ≥ 3 1 2

1 cn−1

2 cn−2 2



stairs. Thus, the number of ways that we can reach a certain  number of steps using the two
aforementioned step sizes is by summing these two, generating the following:

. Thus, we can conclude the following for the situation:

5.6.25

Let us assume that  is the input size for the program. Let us also assume that  signifies the
number of operations done for a particular number of inputs, .
We are given, in the problem that  and that . Knowing this, we can intuitively
say that . Knowing this, we can plug in  as our input to compute the answer:

n

cn = cn−1 + cn−2

c1 = 1, c2 = 2

cn = cn−1 + cn−2 |n ≥ 3

n On

n

O1 = 7 On = On−1 ⋅ 2

On = 7 ⋅ 2n−1 25

O25 = 7 ⋅ 224


